Gun-Fired Precision Munitions For a Transformed Army

November 8, 2003

Repeated attempts to develop gun-fired precision munitions attest to the attractiveness of these munitions, but the lack of success of these attempts also attest to the difficulty of moving them from the laboratory to the field. The appeal of these munitions has grown because of the emphasis on Army Transformation.Many of the development difficulties— underestimating the time required for research and development (R&D), program funding instability, and a general focus on one aspect of the cost-schedule-performance triad to the detriment of the other two—have more to do with management than with technology.

On the other hand, even the failed programs, when taken together, have demonstrated that the technology needed for gun-fired precision munitions is viable and ready for exploitation. Recent advances in computer modeling, miniaturization and design increase the likelihood of success if these advances are combined with some of the added flexibility afforded by new Department of Defense (DoD) acquisition policies.

In this paper, we summarize the advantages of gun-fired precision munitions and show that developing and fielding these munitions is now technically feasible. We also show that changes in the approach to acquisition (i.e., changes based on the best commercial practices) improve the prospect that a program will successfully include feasible innovations. An important aspect of the successful acquisition of precision munitions includes an event-driven rather than schedule-driven R&D program. We illustrate the potential pitfalls by comparing the Joint Direct Attack Munition (JDAM) and the Sense and Destroy Armor (SADARM).